Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Plants (Basel) ; 12(8)2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37111891

RESUMEN

Bacteria have been used to increase crop yields. For their application on crops, bacteria are provided in inoculant formulations that are continuously changing, with liquid- and solid-based products. Bacteria for inoculants are mainly selected from natural isolates. In nature, microorganisms that favor plants exhibit various strategies to succeed and prevail in the rhizosphere, such as biological nitrogen fixation, phosphorus solubilization, and siderophore production. On the other hand, plants have strategies to maintain beneficial microorganisms, such as the exudation of chemoattractanst for specific microorganisms and signaling pathways that regulate plant-bacteria interactions. Transcriptomic approaches are helpful in attempting to elucidate plant-microorganism interactions. Here, we present a review of these issues.

2.
Plants (Basel) ; 12(6)2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36987016

RESUMEN

Compared to agrochemicals, bioinoculants based on plant microbiomes are a sustainable option for increasing crop yields and soil fertility. From the Mexican maize landrace "Raza cónico" (red and blue varieties), we identified yeasts and evaluated in vitro their ability to promote plant growth. Auxin production was detected from yeast isolates and confirmed using Arabidopsis thaliana plants. Inoculation tests were performed on maize, and morphological parameters were measured. Eighty-seven yeast strains were obtained (50 from blue corn and 37 from red corn). These were associated with three families of Ascomycota (Dothideaceae, Debaryomycetaceae, and Metschnikowiaceae) and five families of Basidiomycota (Sporidiobolaceae, Filobasidiaceae, Piskurozymaceae, Tremellaceae, and Rhynchogastremataceae), and, in turn, distributed in 10 genera (Clavispora, Rhodotorula, Papiliotrema, Candida, Suhomyces, Soliccocozyma, Saitozyma Holtermaniella, Naganishia, and Aeurobasidium). We identified strains that solubilized phosphate and produced siderophores, proteases, pectinases, and cellulases but did not produce amylases. Solicoccozyma sp. RY31, C. lusitaniae Y11, R. glutinis Y23, and Naganishia sp. Y52 produced auxins from L-Trp (11.9-52 µg/mL) and root exudates (1.3-22.5 µg/mL). Furthermore, they stimulated the root development of A. thaliana. Inoculation of auxin-producing yeasts caused a 1.5-fold increase in maize plant height, fresh weight, and root length compared to uninoculated controls. Overall, maize landraces harbor plant growth-promoting yeasts and have the potential for use as agricultural biofertilizers.

3.
Microorganisms ; 10(8)2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-36013987

RESUMEN

Microorganisms in extreme volcanic environments play an important role in the development of plants on newly exposed substrates. In this work, we studied the structure and diversity of a bacterial community associated to Andropogon glomeratus and Cheilanthes aemula at El Chichón volcano. The genetic diversity of the strains was revealed by genomic fingerprints and by 16S rDNA gene sequencing. Furthermore, a metagenomic analysis of the rhizosphere samples was carried out for pioneer plants growing inside and outside the volcano. Multifunctional biochemical tests and plant inoculation assays were evaluated to determine their potential as plant growth-promoting bacteria (PGPB). Through metagenomic analysis, a total of 33 bacterial phyla were identified from A. glomeratus and C. aemula rhizosphere samples collected inside the volcano, and outside the volcano 23 bacterial phyla were identified. For both rhizosphere samples, proteobacteria was the most abundant phylum. With a cultivable approach, 174 bacterial strains were isolated from the rhizosphere and tissue of plants growing outside the volcanic complex. Isolates were classified within the genera Acinetobacter, Arthrobacter, Bacillus, Burkholderia, Cupriavidus, Enterobacter, Klebsiella, Lysinibacillus, Pantoea, Pseudomonas, Serratia, Stenotrophomonas and Pandoraea. The evaluated strains were able to produce indole compounds, solubilize phosphate, synthesize siderophores, showed ACC deaminase and nitrogenase activity, and they had a positive effect on the growth and development of Capsicum chinense. The wide diversity of bacteria associated to pioneer plants at El Chichón volcano with PGPB qualities represent an alternative for the recovery of eroded environments, and they can be used efficiently as biofertilizers for agricultural crops growing under adverse conditions.

4.
Front Microbiol ; 12: 740818, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34777287

RESUMEN

Corn and common bean have been cultivated together in Mesoamerica for thousands of years in an intercropping system called "milpa," where the roots are intermingled, favoring the exchange of their microbiota, including symbionts such as rhizobia. In this work, we studied the genomic expression of Rhizobium phaseoli Ch24-10 (by RNA-seq) after a 2-h treatment in the presence of root exudates of maize and bean grown in monoculture and milpa system under hydroponic conditions. In bean exudates, rhizobial genes for nodulation and degradation of aromatic compounds were induced; while in maize, a response of genes for degradation of mucilage and ferulic acid was observed, as well as those for the transport of sugars, dicarboxylic acids and iron. Ch24-10 transcriptomes in milpa resembled those of beans because they both showed high expression of nodulation genes; some genes that were expressed in corn exudates were also induced by the intercropping system, especially those for the degradation of ferulic acid and pectin. Beans grown in milpa system formed nitrogen-fixing nodules similar to monocultured beans; therefore, the presence of maize did not interfere with Rhizobium-bean symbiosis. Genes for the metabolism of sugars and amino acids, flavonoid and phytoalexin tolerance, and a T3SS were expressed in both monocultures and milpa system, which reveals the adaptive capacity of rhizobia to colonize both legumes and cereals. Transcriptional fusions of the putA gene, which participates in proline metabolism, and of a gene encoding a polygalacturonase were used to validate their participation in plant-microbe interactions. We determined the enzymatic activity of carbonic anhydrase whose gene was also overexpressed in response to root exudates.

5.
PeerJ ; 9: e11942, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34458021

RESUMEN

BACKGROUND: The volcano rabbit is the smallest lagomorph in Mexico, it is monotypic and endemic to the Trans-Mexican Volcanic Belt. It is classified as endangered by Mexican legislation and as critically endangered by the IUCN, in the Red List. Romerolagus diazi consumes large amounts of grasses, seedlings, shrubs, and trees. Pines and oaks contain tannins that can be toxic to the organisms which consume them. The volcano rabbit microbiota may be rich in bacteria capable of degrading fiber and phenolic compounds. METHODS: We obtained the fecal microbiome of three adults and one young rabbit collected in Coajomulco, Morelos, Mexico. Taxonomic assignments and gene annotation revealed the possible roles of different bacteria in the rabbit gut. We searched for sequences encoding tannase enzymes and enzymes associated with digestion of plant fibers such as cellulose and hemicellulose. RESULTS: The most representative phyla within the Bacteria domain were: Proteobacteria, Firmicutes and Actinobacteria for the young rabbit sample (S1) and adult rabbit sample (S2), which was the only sample not confirmed by sequencing to correspond to the volcano rabbit. Firmicutes, Actinobacteria and Cyanobacteria were found in adult rabbit samples S3 and S4. The most abundant phylum within the Archaea domain was Euryarchaeota. The most abundant genera of the Bacteria domain were Lachnoclostridium (Firmicutes) and Acinetobacter (Proteobacteria), while Methanosarcina predominated from the Archaea. In addition, the potential functions of metagenomic sequences were identified, which include carbohydrate and amino acid metabolism. We obtained genes encoding enzymes for plant fiber degradation such as endo 1,4 ß-xylanases, arabinofuranosidases, endoglucanases and ß-glucosidases. We also found 18 bacterial tannase sequences.

6.
Microb Biotechnol ; 14(4): 1282-1299, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33320440

RESUMEN

Health depends on the diet and a vegetal diet promotes health by providing fibres, vitamins and diverse metabolites. Remarkably, plants may also provide microbes. Fungi and bacteria that reside inside plant tissues (endophytes) seem better protected to survive digestion; thus, we investigated the reported evidence on the endophytic origin of some members of the gut microbiota in animals such as panda, koala, rabbits and tortoises and several herbivore insects. Data examined here showed that some members of the herbivore gut microbiota are common plant microbes, which derived to become stable microbiota in some cases. Endophytes may contribute to plant fibre or antimetabolite degradation and synthesis of metabolites with the plethora of enzymatic activities that they display; some may have practical applications, for example, Lactobacillus plantarum found in the intestinal tract, plants and in fermented food is used as a probiotic that may defend animals against bacterial and viral infections as other endophytic-enteric bacteria do. Clostridium that is an endophyte and a gut bacterium has remarkable capabilities to degrade cellulose by having cellulosomes that may be considered the most efficient nanomachines. Cellulose degradation is a challenge in animal digestion and for biofuel production. Other endophytic-enteric bacteria may have cellulases, pectinases, xylanases, tannases, proteases, nitrogenases and other enzymatic capabilities that may be attractive for biotechnological developments, indeed many endophytes are used to promote plant growth. Here, a cycle of endophytic-enteric-soil-endophytic microbes is proposed which has relevance for health and comprises the fate of animal faeces as natural microbial inoculants for plants that constitute bacterial sources for animal guts.


Asunto(s)
Endófitos , Herbivoria , Animales , Hongos , Desarrollo de la Planta , Plantas
7.
Syst Appl Microbiol ; 43(5): 126106, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32847781

RESUMEN

Human life became largely dependent on agricultural products after distinct crop-domestication events occurred around 10,000 years ago in different geographical sites. Domestication selected suitable plants for human agricultural practices with unexpected consequences on plant microbiota, which has notable effects on plant growth and health. Among other traits, domestication has changed root architecture, exudation, or defense responses that could have modified plant microbiota. Here we present the comparison of reported data on the microbiota from widely consumed cereals and legumes and their ancestors showing that different bacteria were found in domesticated and wild plant microbiomes in some cases. Considering the large variability in plant microbiota, adequate sampling efforts and function-based approaches are needed to further support differences between the microbiota from wild and domesticated plants. The study of wild plant microbiomes could provide a valuable resource of unexploited beneficial bacteria for crops.


Asunto(s)
Productos Agrícolas/microbiología , Domesticación , Grano Comestible/microbiología , Fabaceae/microbiología , Microbiota
8.
Sci Total Environ ; 724: 138124, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32268286

RESUMEN

Metal release from mining wastes is a major environmental problem affecting ecosystems that requires effective, low-cost strategies for prevention and reclamation. The capacity of two strains (UB3 and UB5) of Sporosarcina luteola was investigated to induce the sequestration of metals by precipitation of carbonates in vitro and under microcosm conditions. These strains carry the ureC gene and have high urease activity. Also, they are highly resistant to metals and have the capacity for producing metallophores and arsenophores. SEM, EDX and XRD reveal that the two strains induced precipitation of calcite, vaterite and magnesian calcite as well as several (M2+)CO3 such as hydromagnesite (Mg2+), rhodochrosite (Mn2+), cerussite (Pb2+), otavite (Cd2+), strontianite (Sr2+), witherite (Ba2+) and hydrozincite (Zn2+) in vitro. Inoculation of the mixed culture of UB3+UB5 in tailings increased the pH and induced the precipitation of vaterite, calcite and smithsonite enhancing biocementation and reducing pore size and permeability slowing down the oxidation of residual sulfides. Results further demonstrated that the strains of S. luteola immobilize bioavailable toxic elements through the precipitation and coprecipitation of thermodynamically stable (M2+)CO3, Fe-Mn oxyhydroxides and organic chelates.


Asunto(s)
Sporosarcina , Carbonatos , Ecosistema , Sulfuros
9.
Rev Argent Microbiol ; 52(3): 231-239, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31982186

RESUMEN

Mine tailings contain high concentrations of heavy metals such as As, Pb, Cu, Mn, and Fe, which are detrimental to the health of humans and the environment. In tailings at the El Fraile mine in Guerrero, Mexico, some plant species are apparently tolerant of heavy metals and can be found growing in the tailings. These plants could be associating with heavy metal-tolerant bacteria that promote plant growth and improve biomass production, and these bacteria could be a useful alternative for bacteria-assisted phytoremediation. The objective of this study was to isolate bacteria detected in the mine tailings at El Fraile-Taxco, focusing on those in the soil from the rhizosphere, the inner tissue of the root, leachate, and water, which have the potential to promote plant growth. The ability of the isolated bacteria to promote plant growth was evaluated in vitro. Of the 151 morphotypes isolated, 51% fix nitrogen, 12% dissolve phosphates, and 12%, 39.7%, and 48.3% produce indole acetic acid, gibberellins, and siderophores, respectively. In addition, 66.7% were observed to produce lytic enzymes, such as proteases, celluloses, lipases, esterases, and amylases, which exhibited activity against Fusarium, Aspergillus, and Colletotrichum. The use of 16S rRNA analysis led to the identification of the bacterial genera Chryseobacterium, Bacillus, Pseudomonas, Mycobacterium, Staphylococcus, Curtobacterium, Enterobacter, Agrobacterium, Ochrobactrum, Serratia, Stenotrophomonas, and Acinetobacter. The bacteria isolated from the rhizosphere exhibited the greatest ability to fix nitrogen and produced indole acetic acid, gibberellins, siderophore, and lytic enzymes. In addition, the isolates collected from the soil samples demonstrated ability to solubilize phosphate.


Asunto(s)
Bacterias , Rizosfera , Biodegradación Ambiental , Humanos , México , Raíces de Plantas , ARN Ribosómico 16S/genética , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...